Code: 20EE4501A

III B.Tech - I Semester – Supplementary Examinations NOVEMBER 2024

UTILIZATION OF ELECTRICAL ENERGY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

- 2. All parts of Question must be answered in one place.
- BL Blooms Level

CO – Course Outcome

		<u>UNIT – I</u>	
1.	a)	Write important factors on which the selection of	7 M
		electric drive depends.	
	b)	Analyze the characteristics of DC series motor and	7 M
		3-phase induction motor.	
	1	OR	
2.	a)	Classify the different types of electric drives and	7 M
		explain in detail.	
	b)	How are the electrical loads classified according to their	7 M
		duty? and Analyze.	
	1	· · · · · ·	
		<u>UNIT – II</u>	
3.	a)	Write different types of electrical heating's and Explain	7 M
		indirect resistance heating.	
	b)	Explain dielectric heating and write its merits and	7 M
		demerits.	
		OR	

Max. Marks: 70

4.	a)	Analyze various methods of electric resistance	8 M
		welding's with neat sketches. Give its merits and	
		demerits with respect to arc welding.	
	b)	Write comparison between DC and AC welding.	6 M
		<u>UNIT-III</u>	
5.	a)	Clearly explain the construction and working of sodium	7 M
		vapor lamp with neat diagram.	
	b)	Explain different types of lighting schemes.	7 M
		OR	
6.	a)	Describe laws of illuminations?	6 M
	b)	A 400 CP lamp is suspended 4m above the center of a	8 M
		circular area of 6m diameter. Calculate the illumination	
		(i) at center of surface	
		(ii) at corner points of the surface	
		(iii) average of illumination on the surface	
		(iv) What will be the average of illumination if	
		reflector of 60% efficiency is used?	
		<u>UNIT – IV</u>	
7.	a)	Explain clearly what do you meant by regenerative	8 M
		braking and how to apply regenerative braking for a DC	
		shunt motor.	
	b)	Write comparison between AC and DC traction system.	6 M
		OR	
8.	a)	Derive an expression for the distance traveled by an	8 M
		electric train using trapezoidal Speed-Time curve.	
	b)	The average speed of a train is 50KMPH. Determine its	6 M
		maximum speed assuming trapezoidal Speed-Time	

	curve, if the distance between the stops is 2.5 KM,				
	acceleration 1.8 KMPHPS and retardation 3 KMPHPS.				
UNIT – V					
9.	a) Determine Tractive effort for propulsion of a train?	7 M			
	b) Determine specific energy output using simplified speed time curve?	7 M			
	OR	1			
10.					